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A brief review of modern theoretical models describing the process of the absorption of real photons by nucleons
at superhigh energies is given. The main aim of the work is an estimation of the theoretical uncertainty of the
cross section prediction at photon energies around 1019 − 1020 eV.

1. Introduction

Photons of energy 1019−1020 eV are interesting
in connection with the problem of the origin of
high energy cosmic rays.

The rather abundant fluxes of ultra-high en-
ergy (UHE) photons are predicted in top-down
models. UHE photons appear also as a result of
interactions of UHE cosmic rays (UHECR) with
relic radiation.

Search for UHE photons use the comparison
of extensive air shower data with results of de-
tailed simulations based on assumptions on the
photonuclear cross section.

An extrapolation of low energy data on σγp has
been given by the parametrization [1]

σγp = 114.3 + 1.647 ln2[s/s0] (μb), (1)

where s0 = 88.243 GeV2. The ln2 s-law in this
formula has been chosen assuming the validity of
the vector dominance model (VDM) and additive
quark model (see below, Eq. (9)).

More recently, Block and Halzen [2] suggested
the extrapolation of σγp using the analyticity ar-
guments. They wrote, as a starting point (ν is
the photon energy in the lab frame)

σγp = C0 +C1 ln
ν

mp
+C2 ln2 ν

mp
+β(

ν

mp
)μ−1.(2)

Constants Ci are constrained using the precise
low energy fit at

√
s < 2.0 GeV (given by

Damashek and Gilman [3]). The authors showed
also that the fit with C2 = 0 (i.e., the ln s -
dependence in asymptotic) is not good (from a
point of view of the χ2-analysis).

2. Eikonal (minijet) models

The total photoabsorption cross section in
eikonalized minijet models is calculated by the
basic formula (see, e.g., [4])

σγp(s) = 2
αem

π
nf 〈e2〉

∫
d2b ×

×
∫

(kmin
⊥0 )2

dk2
⊥0

k2
⊥0

[1 − e−χ(s,b,k2
⊥0)]. (3)

Here, χ(s, b, k2
⊥0) is the factorised eikonal, in

which the probability that the photon can pro-
duce the hadronic fluctuation (qq̃-pair) is re-
moved, k⊥0 is the transverse momentum of the
quarks of the pair. In general, the eikonal func-
tion χ is expressed through the parton densities
inside of the hadronic fluctuation of the photon
and inside the nucleon target,

χ(s, b, k2
⊥0) = A(b)

∫
dp2

⊥

∫
dx1

∫
dx2 ×

× ni(x1, p
2
⊥, k2

⊥0)n
p
j (x2, p

2
⊥)

dσij

dp2
⊥

. (4)

It is customary to separate the number den-
sities ni into two components: a nonperturba-
tive, vector meson dominance (VMD) component
(k⊥0 < k0

⊥0 ∼ 1GeV ) and perturbative one. The
latter corresponds to relatively high masses of the
hadronic system produced by the photon. Fur-
ther, one can assume that, at least at not too
high energies, the VMD component is dominant
and perturbative component can be neglected. It
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means that partonic densities (numbers of small-
x gluons) inside vector mesons are larger than
inside of the qq̃-pair with large k⊥0.

The well-known example of such an approach
is the so-called Aspen model (”QCD-inspired
eikonal model”), see [5] for a review. In this
model the starting point is the eikonal χ(s, b) for
the case of even scattering hadronic amplitudes
(1
2 (fpp + fp̃p)) which consists of three parts:

χ(s, b) = χqq(s, b) + χqg(s, b) + χgg(s, b), (5)

corresponding to quark-quark, quark-gluon and
gluon-gluon interactions. In particular,

χgg(s, b) = A(b, μgg)σgg(s). (6)

If fg(x) ∼ x−(1+ε) (gluon structure function), one
has σgg ∼ sε.

A factor A(b, μgg) is the impact parameter dis-
tribution. The parameters ε, μgg, ... are deter-
mined from experiment. The total cross section of
proton-proton interaction, in the unitary (black-
body) limit, is

σtot(s) ≈ 2
∫

[1 − e−χgg(s,b)]d2b =

= 2π(
ε

μgg
)2 ln2 s

s0
(7)

(at asymptotic energies), A(b, μ)|b→∞ ∼ e−μb.
Now, using VMD and the additive quark

model, the eikonal of γp-scattering can be written
as [5]

χV MD(s, b) =
2
3
σgg(s)A(b,

√
3/2 μgg). (8)

From here one has

σγp = PV MD
had · 2

∫
[1 − e−χV MD

]d2b ∼ ln2 s

s0
, (9)

where PV MD
had is the probability of the photon-

vector meson transition, PV MD
had ∼ 4παem/f2

ρ .

3. Regge models

It is well known that in the Regge approach
to deep inelastic scattering (DIS) the (effective)
Pomeron intercept depends on Q2 and xBj . The
Q2-dependence can be connected with DIS dy-
namics (e.g., with DGLAP evolution) as well

as with the existence of an additional ”hard”
Pomeron. Correspondingly, there are two Regge-
type parametrizations of the proton structure
functions, which are frequently used.

In Donnachie-Landshoff model of two
Pomerons [6] one has, in the Regge limit,

F2(xBj , Q
2) =

∑
i

Ai

( Q2

Q2 + ai

)1+εi

x−εi

Bj , (10)

and, in the photoproduction limit, σγp is finite.
The example of the fit is [6] (2ν = s[GeV2]):

σγp = 0.283(2ν)0.418 + 65.4(2ν)0.0808 [μb]. (11)

Authors warn against using the Eq. (10) at ex-
tremely small xBj where the fixed-power behavior
will be moderated by shadowing suppression.

In the CKMT model [7] the main statement is
that the rescattering (absorption) corrections in
applications of the Regge theory to DIS at HERA
energies are not small. The Pomeron intercept
1 + ε0 = 1.0808 is not the true Pomeron inter-
cept (i.e., it does not correspond to the ”bare
Pomeron”), but rather is the effective one. The
relative contribution of the most important ab-
sorptive corrections depends on Q2. As a result,
at large Q2 we see the bare Pomeron (with inter-
cept ∼ 0.25) and at Q2 = 0 we see the Pomeron
with effective intercept 1.0808 (i.e., in the photo-
production limit, there is no term fastly growing
with the photon energy).

One should mention also the Regge-type model
of [8], where the concept of the effective Pomeron
intercept is used, the value of which is weakly
dependent, in the photoproduction limit, on the
photon energy.

4. Colour dipole models

Real photons and virtual photons with small
xBj have hadronic properties. The length of
hadronic fluctuations is large (and larger than the
target size) at large energies, l ∼ 1

mpxBj
for vir-

tual photons and l ∼ 2Eγ

M2
qq̃

for real photons (Mqq̃

is the invariant mass of the hadronic fluctuation).
So, γN -scattering is a two-step process.

The basic equations of the colour dipole model
are very simple due to the fact that colour dipoles
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Figure 1. The photoabsorption cross section as
a function of photon energy, for different models:
CKMT [7], DL [6], GBW [13], Aspen [5], BH [2],
BB [1], PT [8].

are eigenstates of interaction in QCD and the well
known method of eigenstates [9] can be used. The
total γp- cross section is expressed through the
total gluon-nucleon cross section,

σγp =
∫

d2r⊥Ψγ(r⊥)σ̂(r⊥). (12)

Here, Ψγ(r⊥) (more exactly, ΨT,L(r⊥, z, Q2)) is
the photon-dipole wave function which depends
on the photon virtuality, on the longitudinal mo-
mentum fraction z carried by the quark, and on
the dipole size r⊥. These variables are ”frozen”
during interaction.

The dipole cross section, σ̂(r⊥), is assumed to
be flavour-independent and depending, except of
r⊥, on s = W 2 or x′, where x′ is the momen-
tum fraction of the proton carried by the gluon
attached to the qq̃-loop.

Perturbative QCD leads to the formula [10]

σ̂(r⊥, x′) =
π2

3
r2
⊥αs(Q̄2)x′g(x′, Q̄2), (13)

where Q̄2 is the energy scale depending on the
dipole size, g(x′, Q̄2) is the gluon density.

In MFGS model [11] it is assumed, phenomeno-
logically, that Q̄2 = λ

r2
⊥

, λ = const (4 ÷ 10).

Using unitarity, as a guide, the dipole cross sec-
tion can be written as

σ̂(r⊥, x′) = 2
∫

d2b[1 − e−χ(b,Eγ ,r⊥)] ≡

≡ 2
∫

d2bΓ(Eγ , r⊥, b). (14)

The profile factor Γ(Eγ , r⊥, b) is smaller than 1.
If σ̂(r⊥, x′) is known one can calculate Γ assum-
ing some law of t-dependence of the scattering
amplitude.

Rogers and Strikman [12] calculated, using
MFGS model, the γp - cross section up to super-
high energies. They unitarized cross section ”by
force”, calculating profile function Γ, and, if the
profile function exceeded unity, putting Γ = 1.
By such a way they determined the maximum
rise of σγp with energy, σγp ∼ ln3 Eγ , for Eγ >
103GeV.

The dipole cross section σ̂(r⊥, x′) in MFGS
model rises with energy infinitely. If we suppose
that this cross section is bound by an energy in-
dependent value, as in simple saturation models
[13], the rise of σγp with energy still will take
place, due to the photon wave function. In the
model of [13] one assumes that

σ̂(x′, r⊥) = σ0[1 − e
− r2

⊥
4R2

0
(x′) ], (15)

R2
0(x

′) = (x′/x0)λGeV−2, x′ ∼ xBj . If the
Bjorken variable, in the photoproduction limit,
is modified to be

x = xBj(1 +
4m2

q

Q2
) → 4m2

q

W 2
(Q2 → 0), (16)

it is easy to show that σγp ∼ ln Eγ .
The modification of the model [13], with tak-

ing into account the QCD evolution of the gluon
distribution [14],

σ̂(x′, r⊥) = σ0[1 − e−
π2r2

⊥αs(μ2)x′g(x′,μ2)

3σ0 ] (17)

(here the scale μ2 is assumed to have the form
μ2 = C

r2
⊥

+ μ2
0,), gives, in asymptotics, σγp ∼

ln1/2 Eγ .
Physically, the saturation model, in its phe-

nomenological variant, corresponds to the proton
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being a disc in the transverse plane with a sharp
border. Saturation leads to an uniform blacken-
ing of the disk with decreasing xBj (for a parent
dipole with a fixed size r⊥) without changing the
disc size.

For a GBW model [13] the parameters are:

λ = 0.3 ; x0 = 3 × 10−4 ; σ0 = 23mb. (18)

5. Unitary bounds on s-dependence of σγp

Using three assumptions: i) γN -interaction is
a two-step process, ii) generalized VDM (a dis-
persion relation with variable M2, where M is
the mass of the hadronic fluctuation), iii) the
hadronic interaction of the fluctuation (qq̃-pair)
is a black disc interaction, one can show that the
σγ∗N is given by [15]

σγ∗N =
αem

3π

∫
R(M2)M2dM2

(Q2 + M2)2
σM2N (s), (19)

where R = σ(e+e−→hadrons)
σ(e+e−→μ+μ−) . If we suppose that

the hadronic cross section σM2N is given by the
black-body limit, σM2N ∼ ln2 s

s0
, one obtains, in

the photoproduction limit,

σγN ∼ ln2 s

s0
ln

Mmax + Q2

Mmin + Q2

∣∣∣
Q2→0

∼ ln3 s

s0
. (20)

It is the so called Gribov bound [16]. However,
the hypothesis of the black disk interaction can-
not be correct for qq̃-pairs with large mass Mqq̃.
Such a pair has a small r⊥ ∼ 1/Mqq̃ and, being
colour neutral, interacts with the target weakly,
σ ∼ r2

⊥ (it is predicted by pQCD). Due to this,
there is the following constraint on the value of
M [17]:

M2|max ∼ Λ2e
√

a ln(1/xBj) (21)

(Λ is the QCD scale), so, in far asymptotics one
obtains the corrected unitary bound (assuming
that xmin

Bj ∼ m2
q/s, as in Eq. (16)) [17]:

σγN ∼ ln2
( s

s0

)
ln1/2

( 1
xmin

Bj

)
∼ ln2.5 s

s0
. (22)

6. Conclusions

The straggling of theoretical predictions for σγp

at Eγ ∼ 1019 − 1020eV is large, but not catas-

trophically large. At s = 1011GeV2 the predic-
tions are in interval (0.5 ÷ 1.1)mb.

It is rather difficult to predict reliably the
asymptotic s-dependence of the σγp. Most prob-
ably, the upper limit on the rise of the photoab-
sorption cross section is given by the law ∼ ln3 Eγ

as follows from the estimates of authors of [12]
based on the colour dipole model. The corrected
Gribov unitary bound based on generalized VDM
and pQCD constraint gives σγp ∼ ln2.5 Eγ . Pre-
dictions based on the vector meson dominance
and additive quark model give the law ∼ ln2 Eγ .
Finally, the Regge eikonal model [7] predicts,
asymptotically, σγp ∼ E0.1

γ .
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